End depth computation in inverted semicircular channels using ANNs
نویسندگان
چکیده
The paper presents the application of artificial neural network (ANN) to determine the end-depth-ratio (EDR) for a smooth inverted semicircular channel in all flow regimes (subcritical and supercritical). The experimental data were used to train and validate the network. In subcritical flow, the end depth is related to the critical depth, and the value of EDR is found to be 0.705 for a critical depth–diameter ratio up to 0.40, which agrees closely with the value of 0.695 given by Dey [Flow Meas. Instrum. 12 (4) (2001) 253]. On the other hand, in supercritical flow, the empirical relationships for EDR and non-dimensional discharge with the non-dimensional streamwise slope of the channel are established. # 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
End-depth in inverted semicircular channels: experimental and theoretical studies
The flow upstream of a free overfall from smooth inverted semicircular channels is theoretically analysed to compute the end-depth ratio (EDR), applying an energy equation based on the Boussinesq assumption. This approach eliminates the need for an experimentally determined pressure coefficient. Experiments were conducted with horizontal channel conditions. The EDR related to the critical depth...
متن کاملFlow Discharge Determination in Straight Compound Channels Using ANNs
Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 ...
متن کاملPotential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths
Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...
متن کاملOptimal Depth Neural Networks for Multiplication and Related Problems
Vwani Roychowdhury School of Electrical Engineering Purdue University West Lafayette, IN 47907 An artificial neural network (ANN) is commonly modeled by a threshold circuit, a network of interconnected processing units called linear threshold gates. The depth of a network represents the number of unit delays or the time for parallel computation. The SIze of a circuit is the number of gates and ...
متن کاملPotential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths
Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004